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תקציר

תת-חבורה בכל למצוא שניתן המינימלי היוצרים מספר להיות r (G) את נגדיר ,G לחבורה
שימוש יש r (G) לחסימת סופי. מאינדקס תת-חבורה יוצרים שהם כך ,G של סופי מאינדקס
מציאת דרכי בנוסף, . [Lub86][LM87a] p-וחבורות פרו-סופיות דיסקרטיות, בחבורות רב
זה מידע סופי. מאינדקס חבורות יצרו איברים אילו להבין עוזרות ,r (G) לחסימת היוצרים
למחצה Gפשוטה אלגברית חבורה של דקה חבורה .[Mei17]דקות חבורות למציאת שימושי

אינסופי. קו-נפח עם ,G (R)ב זריצקי צפופה דיסקרטית חבורה תת הינה הממשיים, מעל
השלמים לחוג כי הוכיחו ומן לובוצקי בחבורותמסויימות, r (G)הצלחותרבותבחסימת נעשו
הבאה השאלה את שאל לובוצקי . [LM87b] r (SLn (Zp)) = 2 מתקיים ,Zp ה-p-אדיים

. [Lub86]

?r (SLn (Z)) = 2 מתקיים n ≥ 3 לכל האם בעיה

תשובה נתן מאירי ולאחרונה , [LR11] n = 3 עבור זאת הוכיחו ורייד לונג זו, שאלה בעקבות
מעל אלגברית חבורה עבור הוכיחו ושרמה ואנקטארמנה כן, כמו .[Mei17]זו לשאלה חיובית
ונורמליותמעל ללאתתי-חבורותאלגבריותקשירות ופשוטהלמחצה, קשירה ,Gהרציונאלים
שיש ,G (Z) של סופי מאינדקס תת-חבורה לכל אזי, .2 מ גדולה ממשית ומדרגה הרציונאלים
. [SV05] סופי מאינדקס לחבורה יוצרים שלושה יש ,G (R) מעל קומפקטי לא מנה מרחב לה
r (SLn (Ok)) nמתקיים≥ ≥ 3 ועבור k מספרים שדה עבור כי גם הוכיחו הם מאמר באותו

.kב האלגבריים השלמים אוסף כשOkהוא ,3
הבאה. השאלה את בפני הציג לובוצקי

?r (G (Z)) = 2 מתקיים גבוהה, מדרגה שבליי חבורת לכל האם בעיה

חיובית. לתשובה טובה אינדקציה נותנות שהוזכרו התוצאות אך , פתוחה עדיין זו שאלה
,k = Q (α)ו כלשהו אלגברי שלם α עבור הבאה. לטענה הוכחה מציג היני זה במאמר
ההוכחה אך שהוזכר, כפי חידוש אינה זו תוצאה .n ≥ 3 לכל r (SLn (Ok)) ≤ 3 מתקיים
שמשתמשת מאירי של עבודתו והיאמתבססתעל ושרמה, ואנקטארמנה ע“י שהוצגה שונהמזו

.SLn של המבנה בתכונות

ואראהכמהתכונות אציג כן כמו חבורותשבליי, של ותכונתן חלקמהרכבן מציג אני זו בעבודה
תכונות איך אראה האחרונים החלקים בשני המטריצות. ותחום האלגברים השלמים בתחום

המרכזית. הטענה את גורר בהן השימוש ואיך ,SLnב ביטוי לידי באות אלו
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1 Introduction

For a group G we denote r (G) to be the smallest integer such that for every
�nite index subgroup H of G, H has a subgroup of �nite index generated by
r (G) elements. The attempt to bound r (G) for certain algebraic groups has
been very successful over the years. Lubotzky presented the following problem

Problem 1.1. [Lub86]For n ≥ 3, does r (SLn (Z)) = 2?

This is not true when n = 2, since SL2 (Z) contains a �nite index non-abelian
free subgroup. A positive answer to this problem has been given for the case
n = 3 by Long and Reid[LR11]. More recently, a positive answer to Problem 1.1
has been given by Meiri[Mei17]. Lubotzky and Mann proved in [LM87b], that
for the p-adic integers Zp, r (SLn (Zp)) = 2. This result gave a good indication
for a positive answer for Lubotzky's problem. Another indication has been given
by Sharma and Venkataramana in [SV05]. They showed that for G, a connected
semi-simple algebraic group over Q, when G has no connected normal algebraic
subgroups de�ned over Q and that rankR (G) ≥ 2, r (G (Z)) ≤ 3 (when we
restrict the �nite index subgroups to have non compact quotient space over
G (R)). In their paper they also showed that for any number �eld k and n ≥ 3,
that r (SLn (Ok)) ≤ 3.

I researched a generalized problem of Problem 1.1, presented to me by
Lubotzky

Problem 1.2. For a Chevalley group G of high rank, does r (G (Z)) = 2?

This question is yet to be answered, but it has strong indications that the
answer is positive, especially for the universal Chevalley groups. The conclusion
from the main theorem of this paper (Theorem 6.2), is that for α an integral
element over Z, k = Q (α) and n ≥ 3, r (SLn (Ok)) ≤ 3. As mentioned this
result is not new, but the proof is di�erent then Sharma and Venkataramana's
and based on Meiri's work, utilizing the more speci�c structure of SLn.

1.1 Motivation

In the study of discrete groups and pro-�nite groups, the bound on r (G), bounds
other functions on G and functions on groups derived from G. In the �eld
of powerful groups, this bound has connections to a conjecture by Jones and
Wiegold[Lub86, LM87a]. Another motivation for this problem derived from
the study of the construction of thin groups, which are discrete Zariski-dense
subgroups of G(R) that have in�nite covolume. There is not much known about
the algebraic structure of thin groups and it seems di�cult to construct new
types of them. By understanding in what conditions, small number of elements
creates Zariski-dense subgroups of G(R) that has �nite covolume, we might be
able to �nd elements to create new thin group types[Mei17].
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1.2 Organization

In Sections 2 and 4, I present de�nitions and results regarding certain algebraic
groups. Sections 3 and 5 present relative subjects in ring theory and matrix
theory respectively. Section 6, focuses on implementing the previous sections to
SLn, the main result is in Subsection 6.2.

2 Chevalley Groups

In the past, de�ning and classifying families of simple groups was done mainly
by careful consideration of simple complex Lie groups and root systems. But
many groups, which were known to exist from an association to a Lie algebra
or root system, failed to admit a simple de�nition. Despite the fact that alge-
braic groups can be considered as subgroups of GLn satisfying some polynomial
conditions, those conditions where hard to �nd. In 1995 Chevalley introduced
in a ground-breaking paper[Che55], a method of constructing and de�ning such
groups. This method can construct groups above arbitrary �elds, including �-
nite ones. In this section I will provide some background about the construction,
build and properties of the Chevalley groups. I'll be writing about the Chevalley
groups in the broadened general version treated by Steinberg [Ste67].

2.1 Construction

Let L be a semi-simple Lie algebra over C and let H be its Cartan subalgebra,
then we can write L = H

⊕
α6=0 Lα where α ∈ H∗ and

Lα = {X ∈ L|[H,X] = α(H)X,∀H∈H} .

The α's are linear functions on H called roots and generate H∗ as a vector
space over C, every Lα for α 6= 0 has dimension 1. Denote the collection of
all roots by Σ, then Σ is a root system in the vector space over Q generated
by the roots marked as H*

Q. Σ is irreducible if and only if L is simple[Hal15,
Theorem 7.35]. Let {α1, . . . , αn} ⊂ Σ be a system of simple roots and let
{Hαi , Xα|α ∈ Σ, 1 ≤ i ≤ n} be a Chevalley basis of the algebra L. We denote
UZ to be the Z-algebra generated by all Xm

α /m! for m ∈ Z+;α ∈ Σ, UZ is called
Kostant's Z-form [Kos09].

Lemma 2.1. [Ste67, p.16]Every �nite-dimensional L-module V contains a lat-
tice M invariant under all Xm

α /m! for m ∈ Z+;α ∈ Σ i.e., M is invariant
under UZ .

Let ϕ be a faithful representation of the Lie algebra L in a �nite-dimensional
vector space V , from Lemma 2.1 V contains a lattice M invariant under all
ϕ (Xα)

m
/m! for m ∈ Z+;α ∈ Σ. For k an arbitrary �eld we denote V k =

M ⊗Z k, and for α ∈ Σ, we de�ne homomorphisms xα : k+ → GL(V k) of the
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additive group k+ of k into GL(V k) by

xα (t) = exp (tϕ (Xα)) :=

∞∑
m=0

tmϕ (Xα)
m
/m!

and mark Xα as the group {xα (t) |t ∈ k} (xα (t) is additive in t), Xα is the
root subgroup of α.

De�nition 2.1. The subgroup of GL(V k) generated by all Xα, α ∈ Σ is the
Chevalley group G (k) related to the Lie algebra L, the representation ϕ and
the �eld k.

When the representation ϕ is the adjoint representation, the related Cheval-
ley groups are those de�ned by Chevalley in 1955 [Che55].

2.2 Subgroups

2.2.1 Weyl Group

De�nition 2.2. For each root α ∈ Σ , let sα denote the re�ection about the
hyperplane perpendicular to α in H*

Q, the subgroup W of the orthogonal group

O
(
H*

Q
)
generated by all sα (α ∈ Σ), is called the Weyl group of Σ. For every

αi (1 ≤ i ≤ n) the re�ection sαi is called a simple re�ection, the simple re�ec-
tions creates W [Hal15, Proposition 8.24].

Remark 2.1. By the de�nition of a root system, each sα preserves Σ , from
which it follows that W is a �nite group.

De�nition 2.3. For every α ∈ Σ there are unique ai ∈ Z, 1 ≤ i ≤ n, in
which the nonzero coe�cients are either all positive or all negative, such that
α =

∑n
i=1 aiαi, we de�ne the height of α to be ht (α) :=

∑n
i=1 ai.

Remark 2.2. When Σ is a irreducible root system there is a unique root with
maximal height called the highest root [Hum90, p.40]. There are only nine
classi�cation types for irreducible root systems (and so, simple complex Lie
algebras), An, Bn, Cn, Dn, E6, E7, E8, F4 and G2.

Each element w in W has a length which is de�ned by the length of the
shortest multiplication of simple re�ections that creates w. The Weyl groups
are a type of �nite Coxeter groups which are groups that have a presentation
in terms of re�ections. In every �nite Coxeter group there is a unique element
w0 with maximal length, w0 has order 2 and w0P = −P where P ⊂ Σ is
the set containing all positive roots [Hum90, p.15-16]. The elements created
by product of all simple re�ections in W are called Coxeter elements, di�erent
orderings produce conjugate elements, which have the same order. The order
of the Coxeter elements h is called the Coxeter number. The Coxeter number
can be calculated by h = 2|P |

n , or when Σ is irreducible and h′ is the height of
the highest root, we have h = h′ + 1 [Hum90, p.79,84]. When h is even there is
a unique Coxeter element w such that w0 = wh/2.
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Example 2.1. For the irreducible root system of type An−1 the Weyl group is
isomorphic to the symmetric group Sn, the Coxeter number is equal to n and
the permutation (12) (23) ... ((n− 1)n) = (12 . . . n) is a Coxeter element. For
an even n the permutation (246 . . . (n− 2)n (n− 1) (n− 3) . . . 31) is the Coxeter
element w for which wn/2 = w0 = (1n) (2 (n− 1)) . . .

(
n
2

(
n
2 + 1

))
.

2.2.2 Borel and Cartan Subgroups

Proposition 2.1. [Ste67, p.29]Let U+ = XP := 〈Xα|α ∈ P 〉 then:

(a) U+ =
∏

Xα with uniqueness of expression, where the product is taken over
all α ∈ P arranged in any �xed order.

(b) U+ is unipotent and is superdiagonal relative to an appropriate choice of
basis for V k. Similarly, U− = X−P is unipotent and subdiagonal relative
to the same choice of basis.

Remark 2.3. For every α, β ∈ Σ and t, u ∈ k we have the following relations
presented by Steinberg which are independent of the representation space chosen
for G [Ste67, p.23]:

(R1) (xα (t) , xβ (u)) =
∏
xiα+jβ

(
ci,jt

iuj
)
where the product is taken over

all roots iα + jβ ∈ Σ, i, j ∈ Z+ arranged in some �xed but arbitrary
order, and the ci,js are unique integers depending on α, β, and the
chosen ordering, but not on t or u.

(R2) wα (t) := xα (t)x−α
(
−t−1

)
xα (t) , wα := wα (1).

(R3) wαxβ (t)w−1α = xsαβ (ct) where c = c (α, β) = ±1 is independent of t
and k. sα is the re�ection in the Weyl group.

(R4) hα (t) := wα (t)wα (1)
−1

.

Corollary 2.1. [Ste67, p.24]Let N be the group generated by all wα (t), H be
the subgroup generated by all hα (t) and B be the group generated by U+ and
H. Then:

(a) U+ is normal in B and B = U+H.

(b) H is abelian and normal in N .

(c) If |k| > 3, N is the normalizer in G of H.

(d) There exists an epimorphism ϕ : W −→ N�H such that ϕ(sα) = Hwα (t)
for all roots α.

Remark 2.4. From relation (R1) and Corollary 2.1, when α is a root with max-
imal height, Xα is normal in U+. Under the same base of Proposition 2.1(b) H
is diagonal and Xα is normal in B.
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Theorem 2.1. [Ste67, Theorem 6]If k is an algebraically closed �eld, k0 is the
prime sub�eld and M is the lattice as in Proposition 2.1 used to de�ne G, then:

(a) G is a semisimple algebraic group relative to M .

(b) B is a maximal connected solvable subgroup.

(c) H is a maximal connected group and diagonalizable under the same base
as in Proposition 2.1(b).

(d) ϕ as de�ned in Corollary 2.1 is an isomorphism.

(e) G,B,H, and N are de�ned over k0 relative to M .

Remark 2.5. The groups B and N form a BN pair as de�ned by J. Tits [Tit64,
De�nition 2.1].

A maximal connected solvable closed subgroup of an algebraic group, is
called a Borel subgroup, and a maximal connected abelian subgroup of an alge-
braic groups, is called a Cartan subgroup and is usually de�ned as the centralizer
of a maximal torus. When k is an algebraically closed �eld, B and H are a Borel
subgroup and a Cartan subgroup of G respectively. In this case there is a sin-
gle conjugacy class of Borel subgroups and a single conjugacy class of Cartan
subgroups.

De�nition 2.4. A proper subgroup P ⊂ G is called a parabolic subgroup if
it contains some Borel subgroup of G. The unipotent radical of such P is a
horospherical subgroup U of G. The Lie algebra u of U is called a horospherical
subalgebra and the Lie algebra p of P is called a parabolic subalgebra. An
opposite horospherical subgroup of U is a horospherical subgroup U− of G,
such that the algebra L = p ⊕ u−. The opposite horospherical subgroup U−

always exist.

Example 2.2. U+, U− are a pair of opposite horospherical subgroups of G.

2.3 Bruhat Decomposition

Throughout this paper, for n ∈ N that represents w ∈ W under ϕ : W −→
N�H, I will write wB (Bw) in place of nB (Bn).

Theorem 2.2. (Bruhat decomposition)

(a)
⋃
w∈W BwB = G, BwB is called the Bruhat cell of w.

(b) If k is algebraically closed the union is disjoint.

Remark 2.6. From the Bruhat decomposition, many questions about G can be
reduce to questions about W and B.

Theorem 2.3. [Ste67, Theorem 4']Let w ∈ W let nw be a representative of w
in N , and set Qw = P

⋂
w−1 (−P ) (P denotes the set of positive roots). Then

BwB = BnwXQw with uniqueness of expression on the right.
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Example 2.3. For the orthogonal algebra L = so2n (C), which is the Lie alge-
bra consisting of the matrices

{
X∈Mat2n(C)|XTJ2n + J2nX = 0

}
, where Jn is

the n-by-n matrix with one on the anti-diagonal and zero elsewhere. The index-
ing of the rows and columns of our matrices from top to bottom and left to right
is by 1, . . . , n,−n, . . . ,−1. The root system is of type Dn, the roots are denoted
by α±1i,±2j = ±1ei ±2 ej , (1 ≤ i < j ≤ n), the positive roots are αi±j = ei ± ej
for (1 ≤ i < j ≤ n). For a certain representation we have G = SO2n (C) ={
X∈SL2n(C)|XTJ2nX = J2n

}
. The root elements xαi,j (t) ; (−n ≤ i, j ≤ n) in

G correspond to the matrices ei,j (t) = Id+ẽi,−j (t)−ẽj,−i (t), where ẽi,j (t) has t
at the (i, j) entry and zeros elsewhere. B can be chosen to be the superdiagonal
matrices in G, representative for elements ofW in G consists of all permutations
and an even number sign changes in n coordinates. So for w ∈ W matching
the permutation ((n− 1) . . . 1 (1− n) . . . (−1)) (n (−n)), which is a Coxeter el-
ement, we have Qw = {α1,n, α1,−i|2 ≤ i ≤ n}, so every element g ∈ BwB can
be written as g = bpwe1,n (t1,n)

∏n
i=2 e1,−i (t1,−i), where pw is a permutation

matrix representing w.

2.4 Representation Spaces and Properties

De�nition 2.5. Let V be a representation space for L, a vector v ∈ V is a
weight vector if there is a linear functional λ on H such that Hv = λ (H) v for
all H ∈ H. If such a v 6= 0 exists, we call the corresponding λ a weight of the
representation.

Lemma 2.2. [Ste67, Lemma 27]Let V be a representation space for L.

(a) The additive group generated by all the weights of all representations forms
a lattice L1.

(b) The additive group generated by all roots is a sublattice L0 of L1.

(c) The additive group generated by all weights of a faithful representation on
V forms a lattice LV between L0 and L1.

All lattices between L0 and L1 can be realized as in Lemma 2.2(c) by an
appropriate choice of V . For example, LV = L0 if V corresponds to the adjoint
representation. The Chevalley groups G0 and G1 corresponding to the lattices
L0 and L1, are called the adjoint group and the universal group respectively. The
property of the nesting lattices can be expanded to a property of the Chevalley
groups in the following way.

Corollary 2.2. [Ste67, p.30]If G,G′ are Chevalley groups constructed from the
same L and k but using V ′ for G′ in place of V , such that LV ⊆ LV ′ . Then
there exists a homomorphism φ : G′ → G such that φ (x′α (t)) = xα (t) for all α,
t and kerφ ⊆ Z(G′). If LV = LV ′ then φ is an isomorphism.

Remark 2.7. This gives us a useful tool to go between types of Chevalley groups.
The center Z (G), is �nite and when G is the adjoint group, Z (G) = {1}. When

L is simple, G�Z (G) is simple, so G is almost simple.
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Lemma 2.3. [Ste67, Lemma 32']Assume L is simple and |k| > 3, then [G,G] =
G.

Remark 2.8. If k = C then G has the structure of a complex Lie group, and
all the preceding statements have natural modi�cations in the language of Lie
groups.

Theorem 2.4. [Ste67, Theorem 13]If G is a universal Chevalley group over C
viewed as a Lie group, then G is simply connected.

Example 2.4. SLn (C), Spn (C), and Spinn (C) are simply connected. These
cases can also be proved by induction on n. [Che46, Chapter II]

3 The Ring of S-Integers

In this section I will introduce some information regarding a �nitely-generated
Z-module, the ring of S-integers over certain �elds.

De�nition 3.1. Let k be an algebraic number �eld, an integral element is a
root of a monic polynomial with integer coe�cients. The ring of integers of k
is the ring of all integral elements contained in k, is denoted by Ok .

Let S∞ be the set of all archimedean valuations of an algebraic number
�eld k, let S be a �nite set of absolute values of k containing S∞. The ring
OS := {x ∈ k|v(x)≥0 for every valuation v /∈ S} is the ring of S-integers of k
and OS∞ = Ok.[RP94, p.11]

Theorem 3.1. Let α be an integral element over Z and k = Q (α), then for
every (0) 6= I C Z [α] there is an ideal (0) 6= J C Ok such that J ⊂ I.

Proof. First we claim that I ∩ Z 6= {0}, let 0 6= β ∈ I it is integral so there is
a monic polynomial p (x) = xr + ar−1x

r−1 + . . . + a0 ∈ Z [x] and a0 6= 0 such
p (β) = 0. a0 = −

(
βr−1 + ar−1β

r−2 + . . .+ a1
)
β ∈ I because I is an ideal.

Now it is known that there is a Z basis for Ok , ω1 , . . . , ωn ∈ Ok\ {0}, such
Ok = Zω1 + . . . + Zωn. For every 1 ≤ i ≤ n there are pi, qi ∈ Z [α] \ {0} such
ωi = pi

qi
since Ok ⊂ k = Q (α). We mark q =

∏n
i=1 qi and let 0 6= a ∈ Z ∩ I so

qωi ∈ Z [α] ⊂ Ok. From I being an ideal we have qωia ∈ I for every 1 ≤ i ≤ n
and so if we denote h := aq ∈ Z [α] we get hZωi ⊂ I. Since I closed under the
sum operator we have I ⊃ J := h

∑n
i=1 Zωi = hOk and J is a non zero ideal of

Ok.

4 Finite Index Subgroups

Let k be some �eld and let G be a connected k-algebraic group with a faithful
k-representation of G in some GLn (k). We identify G with its image under
this representation. For any ring R ⊂ k and subgroup H ≤ G, we de�ne
H (R) := H ∩GLn (R). More generally for an ideal I / R, we set

H (I) = {x ∈ H (R) |x ≡ Id ( mod I)}. (4.1)

8



Notice that H (I) is the kernel of the projection Π : H (R)→ H
(
R�I

)
.

4.1 Zariski Density of Finite Index Subgroups

In this subsection, let L be a simple complex Lie algebra and let G be the
Chevalley group related to L, C, and some representation. Also let α be an
integral element over Z and k := Q (α). The purpose of this section is to give a
quick explanation for the following proposition.

Proposition 4.1. Every �nite index subgroup of G (Ok) is Zariski dense in G.

Remark 4.1. For every �nite index subgroup H of G (Ok), H∩G (Z) has a �nite
index in G (Z), so it's enough to prove Proposition 4.1 for G (Z).

Theorem 4.1. [BHC61, Theorem 1]Let G be a connected complex algebraic
group de�ned over Q. Then there exists an open set U in G (R) with the following
properties:

(a) G (R) = UG (Z).

(b) if G has no nontrivial rational character de�ned over Q, U has �nite Haar
measure.

A character of G is a homomorphism from G to the multiplicative group of a
�eld, which is abelian, then from Lemma 2.3 we can see that every character of G

is trivial. This theorem by Borel and Harish-Chandra, implies that G (R)�G (Z)
has a �nite Haar measure and since G (Z) is a discrete subgroup, that means
that G (Z) is a lattice in G (R). So every �nite index subgroup of G (Z) is a
lattice in G (R).

Theorem 4.2. (Borel density theorem)Let G be a connected semisimple real
algebraic group without compact factors and let Γ be a lattice in G. Then Γ is
Zariski dense in G.

A slightly more general form of this theorem was �rst presented by Borel
in his paper [Bor60], the way this version derived from Borel's original paper
can be found in Raghunathan's book [Rag72, Chapter V]. The real Chevalley
groups have no compact factors, this comes from the construction, speci�cally
from the fact that the Cartan subalgebra has the same dimension over R as it
has over C. This dimension is the rank of G (over a selected �eld) and when
L is simple, is equals to the number of simple roots. The interested reader is
referred to [Mor15, Chapter 2], [Pet17, Lemma 3.11] for more details. So from
Theorem 4.2, every �nite index subgroup of G (Z) is Zariski dense in G (R).

Theorem 4.3. [Ros57, p.44]If the connected linear algebraic group G is de�ned
over the in�nite perfect �eld k, then the points of G that are rational over k are
dense in G.

From Theorem 2.1 G is semisimple, in particular G is connected. Since C
is perfect, from this Rosenlicht's theorem we get that G (Q) is Zariski dense in
G. Obviously that mean that G (R) is Zariski dense in G, so every �nite index
subgroup of G (Z) is Zariski dense in G.
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4.2 Generating Pairs of Opposite Horospherical Subgroups

Here let k be a global �eld and G a connected, absolutely almost simple, simply
connected k-algebraic group of rankk (G) ≥ 2. We �x a faithful k-representation
of G in some GLn (k) and identify G with its image under this representation.
Let S be a �nite set of valuations of k containing all the archimedean valuations
and OS be the ring of S-integers in k. We �x a maximal k−split torus T in G.
Let Σ denote the root system of G with respect to T . Let Π ⊂ Σ be a system of
simple roots and denote by P+ (resp. P−) the positive (resp. negative) roots.
For A ⊂ Σ, let XA denote the group generated by all root subgroups Xα, α ∈ A.

Theorem 4.4. Let Γ (I) be the group generated by XP+ (I) and XP− (I). Then
for any non-zero ideal I C OS , Γ (I) has a �nite index in G (OS ).[Rag92, The-
orem 1.2]

This result was �rst presented for classical groups with rankk (G) ≥ 2 by
Vaserstein in[Vas73], and then for Chevalley groups for rankk (G) ≥ 2 by Tits in
[Tit76]. Venkataramana expanded this result for some groups with rankk (G) ≥
1 [Ven94]. This result is true for an arbitrary pair of opposite horospherical
k-subgroups.

Claim 4.1. Let I be a nonzero ideal in OS and Γ (I) denote the subgroup of
G (OS ) generated by XP+ (I) and XP− (I). Then for any g ∈ G (k) there is a
non-zero ideal I ′ in OS such that gΓ (I ′) g−1 ⊂ Γ (I).[Rag92]

The universal Chevalley groups over C has the S-congruence subgroup prop-
erty. That means that every �nite index subgroup of G (OS ) contains a G (I),
for I a non zero ideal of OS , such G (I) is called a principal S-congruence sub-
group. The proof of Theorem 4.4 is connected to the congruence subgroup
problem, which asks if the S-congruence subgroup property applies. By stud-
ding the group under two topologies, called the S-congruence topology and the
pro�nite topology, we can �nd connection between the �nite index subgroups
and the principal S-congruence subgroups.

5 Matrix Discriminant

De�nition 5.1. The companion matrix of the monic polynomial p (x) = xr +
ar−1x

r−1 + . . .+ a0 ∈ k [x], for k a �eld, is the matrix

C (p) :=



0 0 · · · 0 −a0
1 0 · · · 0 −a1

0 1
. . .

... −a2
...

. . .
. . . 0

...
0 · · · 0 1 −ar−1

 .
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Claim 5.1. If A is an n-by-n matrix with entries from some �eld k, then the
following are equivalent[HJ12, p.194-195]:

(a) A is similar to the companion matrix over k of its characteristic polyno-
mial.

(b) The characteristic polynomial of A coincides with the minimal polynomial
of A.

(c) There exists a cyclic vector v in V = kn forA, meaning that
{
v,Av,A2v, . . . , An−1v

}
is a basis of V .

De�nition 5.2. For matrices A ∈Mn(k), B ∈Mm(k) their direct sum is

A⊕B :=

(
A 0
0 B

)
.

Theorem 5.1. Every matrix A ∈ Mn(k) is similar over k to a direct sum of
companion matrices C(p1)⊕ . . .⊕C(pr) where pi ∈ k [x] monic polynomials such
that for every 1 ≤ i ≤ r − 1, pi|pi+1. [DF03, Chap .12 Theorem 14.]

Remark 5.1. We can see that the characteristic polynomial of A is equal to∏r
i=1 pi.

De�nition 5.3. For two polynomials p (x) =
∑n
i=0 aix

i, q (x) =
∑m
i=0 bix

i with
respective roots α1, . . . αn;β1, . . . βm the resultant is de�ned by

Res(p, q) := amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj)

De�nition 5.4. The discriminant of the polynomial p (x) = anx
n + . . . + a0 ,

where an 6= 0, ai ∈ R a commutative ring, is

disc(p) =
(−1)

n(n−1)
2

an
Res (p, p′) .

The discriminant of a matrix A ∈ Mn(k) is the discriminant of its charac-
teristic polynomial.

Remark 5.2. Form De�nition 5.3, the resultant of two polynomials with coe�-
cients in an integral domain, is zero if and only if they have a common divisor of
positive degree. If for a polynomial p we have disc (p) 6= 0 then Res (p, p′) 6= 0,
this is true if and only if there are no common roots for p and p′ and that is if
and only if p has distinct roots.
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6 The SLn Group

When L is the simple Lie algebra sln (k) ; (n≥2), the Lie algebra of n×n matri-
ces of trace 0 with multiplication [X,Y ] = XY − Y X, the universal Cheval-
ley group G over L and k is the SLn (k) group. The roots are the maps
diag (a1, a2, ..., an) → ai − aj , (1 ≤ i, j ≤ n, i 6= j), the positive roots are for
(1 ≤ i < j ≤ n) and the root system is of type An−1. We denote the roots
by αi,j and we have ht (αi,j) = j − i. We can choose the root elements xαi,j (t)
in G, to correspond to the matrices ei,j (t) = Id+ ẽi,j (t), where ẽi,j (t) has t at
the (i, j) entry and zeros elsewhere. Under this choice, we have that U+, B and
H (as de�ned in Proposition 2.1 and Corollary 2.1) are the unipotent superdiag-
onal, superdiagonal and diagonal matrices respectively. The root subgroups are
denoted by Ei,j := Xαi,j = 〈ei,j (t) |t ∈ k〉 and for 1 ≤ i � j ≤ n and we de�ne

Ui,j := 〈Er,s| (j � s) or (j = s ∧ r ≤ i)〉 (6.1)

Notice that

U1,2 =



1 ∗ ∗ ∗ · · · ∗
1 ∗ ∗ · · · ∗

1 ∗ · · · ∗

1
. . .

...
. . . ∗

1


, U2,3 =



1 0 ∗ ∗ · · · ∗
1 ∗ ∗ · · · ∗

1 ∗ · · · ∗

1
. . .

...
. . . ∗

1



, U1,3 =



1 0 ∗ ∗ · · · ∗
1 0 ∗ · · · ∗

1 ∗ · · · ∗

1
. . .

...
. . . ∗

1


. . . , U1,n =



1 0 0 · · · 0 ∗
1 0 · · · 0 0

1
. . . 0 0

1
. . .

...
. . . 0

1


also notice that for (i, j) = (1, 2), U1,2 = 〈Ei,j |1 ≤ i � j ≤ n〉 =: U+. From The-

orem 2.1, if k = C then the Weyl group W ∼= NG (H)�H ∼= Sn. Representative
for elements of W in G can be the matching permutation matrices. However,
since the determinant of a permutation matrix is the sign of the permutation, to
represent an odd permutation in G, we can take one of the nonzero elements to
be −1 instead of 1. In this section I'll assume G = SLn (C), and will prove some
results regarding G. Notice since L is simple and G is the universal Chevalley
group over L and C, G is simply connected and so, all the conclusions in Section
4 applies.

6.1 Open Set in a Conjugacy Class of a Bruhat Cell

In theWeyl groupW ∼= Sn, the element that correspond to the permutation σ :=
(12) (23) ... ((n− 1)n) = (12 . . . n), is a Coxeter element. For a representative
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of the coset of σ in G (as de�ned in Corollary 2.1(d)), we can take the matrix

w :=



0 0 · · · 0 1
−1 0 0

0 −1
. . .

...
...

. . .
. . . 0 0

0 · · · 0 −1 0

 (6.2)

Notice that forQσ as de�ned in Theorem 2.3, we haveQσ = {αi,n|1 ≤ i ≤ n− 1},
XQσ = Un−1,n. So every element g ∈ BwB can be written as g = bw

∏n−1
i=1 ei,n (ti) ∈

BwUn−1,n.

Theorem 6.1. The conjugacy class in G (Z) of the Bruhat cell B (Q)wB (Q)
contains a Zariski open set.

Proof. We de�ne the Zariski open set J := {g ∈ SLn (Z) | disc (g) 6= 0}, it is
Zariski open since it is a complement of an algebraic set. Let g ∈ J , we'll show
that g is conjugate in SLn (Z) to a matrix in B (Q)wB (Q). From Theorem 5.1
we have that g is conjugate to

⊕r
i=1 C (fi) in GLn (Q) for fi rational monic

polynomials such that fi|fi+1. The characteristic polynomial for conjugate ma-
trices is the same, so the characteristic polynomial of g is f :=

∏r
i=1 fi. Since

disc (g) 6= 0, form Remark 5.2 we have that f has distinct roots. That means
that f1, . . . , fr are pairwise coprime, and from the assumption that fi|fi+1, we
get that r = 1 so g is conjugate to a companion matrix in GLn (Z). From Claim
5.1 there is a v ∈ Qn such that V =

{
v, gv, . . . , gn−1v

}
is a Q basis for Qn. So

under the basis V we have

[g]V = C (f) =


a0

1 a1
. . .

...
1 an−1


for ai ∈ Z and since g ∈ SLn (Z) we have a0 = (−1)

n+1
and for

b̃ =


−1 −a1

a0

−1
...

. . . −an−1

a0
a0

 ∈ B (Z)

we get [g]V b̃ = w. We can construct a Z basis W = {w1, . . . , wn} for Zn such
that for every 1 ≤ k ≤ n

spanQ {wi|1 ≤ i ≤ k} = spanQ
{
gi−1v|1 ≤ i ≤ k

}
(6.3)

and so g is conjugated to [g]W in GLn (Z). Since we can change w1 → −w1, we
may assume the conjugation is in SLn (Z). From Equation (6.3), the change of
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basis matrix between V andW is an upper triangular matrix b. We can set b′ =
1

det(b)b ∈ B (Q) and we get [g]W = b′ [g]V b
′−1 = b′wb̃−1b′−1 ∈ B (Q)wB (Q).

As g is conjugated to [g]W in SLn (Z), we are done.

Corollary 6.1. Let H be a subgroup with �nite index of G (Z), then H ∩
B (Q)wUn−1,n (Q) 6= ∅.
Proof. Every �nite index subgroup contains a normal subgroup of �nite index,
so we may assume that H is normal in G (Z). From Subsection 4.1, H is Zariski
dense in G, so from Theorem 6.1 H contains an element of the conjugacy class
over G (Z) of B (Q)wB (Q). SinceH is normal in G (Z), it contains an element g
of B (Q)wB (Q). From Theorem 2.3, we conclude that g ∈ H∩B (Q)wB (Q) =
H ∩B (Q)wUn−1,n (Q) as needed.

6.2 Finite Index Subgroup Construction

The following Theorem demonstrate a method of using the Chevalley group
structure and certain elements, to generate a �nite index subgroup. The method
is to use the fact that the Weyl group's representatives, act on the root elements
as in Remark 2.3 (R3). So by having a root element, and a Weyl group's element
representative with high enough order, we can create more root elements. For
example, for a root element ei,j (t) in G and w as de�ned in 6.2, we have
wei,j (t) = eσ(i),σ(j) (−t) ,w−1

ei,j (t) = eσ−1(i),σ−1(j) (−t), for σ = (1 . . . n). Since
the root elements are unipotent elements and are the image of the additive group
of the �eld, it is not di�cult to �nd root elements in �nite index groups of G (Z).
The representative for the Weyl group in G (Z), are only in the form of wα (±1),
as de�ned in Remark 2.3 (R2). So it is more di�cult to �nd such elements in
our subgroups of G (Z). We go around this by �nding more general elements,
speci�cally we use elements present in the Bruhat cells. In their composition,
those elements include a representative of an element in the Weyl group. By
having an element of a Bruhat cell, that is constructed from a Coxeter element
using a root element, we can generate most of the time a Coxeter number of
root elements. Once we have enough root elements, we use relation (R1) in
Remark 2.3, to create more. In this section we set n ≥ 3, α an integral element
over Z and k := Q (α).

Theorem 6.2. There are unipotent element u1 ∈ SLn (Z) , u2 ∈ SLn (Ok)
such that for every g ∈ SLn (Z) ∩ B (Q)wUn−1,n (Q) and every m1,m2 ∈
Z+, 〈g, um1

1 , um2
2 〉 is of �nite index in SLn (Ok).

Proof. We take u1 := e1,n (1) , u2 = e2,n (α) and write g = bwu ∈ B (Q)wUn−1,n (Q)
(where w as in (6.2) and B is upper triangular matrices and Un−1,n is as Equa-
tion (6.1) both over k). Let m, l ∈ Z+ and de�ne Λ :=

〈
g, um1 , u

l
2

〉
and show

that for every r ∈ N there is a kr ∈ Z+ such that

U
(r)
1,2 (krZ) := Id+ (U1,2 (krZ)− Id)αr ⊂ Λ (6.4)

(where U1,2(I) as in Equation 4.1). We'll show this by induction on r, in each
level we will use the relation in Remark 2.3 to create more root elements.
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r = 0 This case has a proof given by Meiri in [Mei17], I'll show a variation of
it. I'll show that for every 1 ≤ i < j ≤ n we have ki,j ∈ Z+ such that

U
(0)
i,j (ki,jZ) = Ui,j (ki,jZ) ⊂ Λ by induction on j.

j = n Again by induction on 1 ≤ i ≤ n − 1 we'll show that there are
ki,n ∈ Z+ such that Ui,n (ki,nZ) ⊂ Λ.

i = 1 In this case we have um1 = e1,n (m) ∈ Λ and notice that
〈e1,n (m)〉 = E1,n (mZ) = U1,n (mZ) ⊂ Λ.

i Assume for i and we prove for i+ 1. From the assumption we have
ei,n (ki,n) , e1,n (m) ∈ Λ and notice that b

−1

e1,n (m) = b−1e1,n (m) b =
e1,n (qm) for some 0 6= q ∈ Q. Since Un−1,n is abelian we have Λ∩
SLn (Z) 3 h := [gei,n (ki,n) , e1,n (m)] =

[
bei+1,1 (−ki,n) ,b e1,n (qm)

]
=

b [ei+1,1 (−ki,n) , e1,n (qm)] = bei+1,n (−ki,nqm) = Id+
∑i+1
c=1 ẽc,n (tc)

where tc ∈ Z, ti+1 6= 0 and ẽi,j (t) is the matrix with t in the
(i, j) position and zero everywhere else. Then since from the
induction assumption ec,n (−ki,ntc) ∈ Λ for every 1 ≤ c ≤ i we

have
(∏i

c=1 ec,n (−ki,ntc)
)
hki,n = ei+1,n (ti+1ki,n) ∈ Λ and so

Ui+1,n (ti+1ki,nZ) ⊂ Λ.

j Assume for j and we prove for j−1, let 1 ≤ i < j−1 from the assumption
there is a ki+1,j ∈ Z+ such that Ui+1,j (ki+1,jZ) ⊂ Λ. Ui+1,j is

normalized by b so ei+1,j (1) ∈b−1

Ui+1,j , from that we have that
u−1

ei,j−1 (1) = Id+ ẽi,j−1 (1)+ ẽi,n

(
z1
z2

)
∈ g−1

Ui+1,j for zi ∈ Z, z2 6=

0. We de�ne the projection Πki+1,j
: SLn (Z)→ SLn

(
Z�ki+1,jZ

)
and

notice that for u′ ∈ Ui+1,j (Z) , if g
−1

u′ ∈ ker
(
Πki+1,j

)
, then u′ ∈

ker
(
Πki+1,j

)
. So(

g−1

Ui+1,j

)
(ki+1,jZ) ⊂g

−1

(Ui+1,j (ki+1,jZ)) ⊂ Λ. (6.5)

Then we know that
(
u−1

ei,j−1 (1)
)z2ki+1,j

∈
(
g−1

Ui+1,j

)
(ki+1,jZ) ⊂

Λ. Since the assumption give us ei,n (−z1ki+1,j) ∈ Λ,

ei,n (−z1ki+1,j)
(
u−1

ei,j−1 (1)
)z2ki+1,j

= ei,j−1 (z2ki+1,j) ∈ Λ,

so Ui,j−1 (z2ki+1,j) ⊂ Λ.

r − 1 We now assume (6.4) for every 1 ≤ r′ < r. So for every 1 ≤ i < j ≤ n we

need to �nd k
(r)
i,j ∈ Z+ such that U

(r)
i,j

(
k
(r)
i,j Z

)
⊂ Λ, we'll do it by induction

on j.

j = n We will show that for every 1 ≤ i ≤ n− 1 there is a k
(r)
i,n ∈ Z+ such

that U
(r)
i,n

(
k
(r)
i,nZ

)
⊂ Λ, by induction on i.
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i = 1 Since U
(r−1)
1,2 (kr−1Z) ⊂ Λ we have

[
e1,2

(
kr−1α

r−1) , ul2] =

e1,n (kr−1lα
r) ∈ Λ and so U

(r)
1,n (kr−1lZ) ⊂ Λ.

i We assume for i and prove for i+1, from the assumption we deduce

that Λ 3 h′′ :=
[
gei,n

(
k
(r)
i,nα

r
)
, e1,n (m)

]
=b ei+1,n

(
−qmk(r)i,nαr

)
=

Id +
∑i+1
c=1 ẽc,n (t′cα

r) for t′c ∈ Z, t′i+1 6= 0. We can have now(∏i
c=1 ec,n

(
−k(r)i,nt′cαr

))
h′′k

(r)
i,n = ei+1,n

(
t′i+1k

(r)
i,nα

r
)
∈ Λ ⇒

U
(r)
i+1,n

(
t′i+1k

(r)
i,nZ

)
⊂ Λ.

j We assume for j and prove for j−1, let 1 ≤ i < j−1 from the assumption

there is a ki+1,j ∈ Z+ such that U
(r)
i+1,j

(
k
(r)
i+1,jZ

)
⊂ Λ. Since Ui+1,j

is normalized by b we have g−1

U
(r)
i+1,j = Id +

(
g−1

Ui+1,j − Id
)
αr 3

h̄ :=u−1

ei,j−1 (αr) = Id + ẽi,j−1 (αr) + ẽi,n

(
z3
z4
αr
)
for zi ∈ Z, z4 6=

0. Similar to (6.5) we have h̄z4ki+1,j ∈
(
g−1

U
(r)
i+1,j

)
(ki+1,jZ) ⊂g−1(

U
(r)
i+1,j (ki+1,jZ)

)
⊂ Λ. Since ei,n (−z3ki+1,jα

r) ∈ Λ, we have

ei,n (−z3ki+1,jα
r) h̄z4ki+1,j = ei,j−1 (z4ki+1,jα

r) ∈ Λ. So we can de-

duce that U
(r)
i,j−1 (z4ki+1,jZ) ⊂ Λ as needed.

Let d ∈ Z the degree of the minimal polynomial of α over Z. We de�ne k =∏d
i=0 ki, then from previous part we have U

(i)
1,2 (kZ) ⊂ Λ for every 0 ≤ i ≤ d. We

denote 0 6= I :=
∑d
i=0 kZαi / Z [α]. From Theorem 3.1 there is a non zero ideal

0 6= J /Ok such that J ⊂ I, so we have U+ (J) ⊂ Λ. Since Un−1,n is abelian we

have gen−1,n (J) =b en,1 (J), we denote Λ∗ :=b−1

Λ then en,1 (J) ⊂ Λ∗. Since
n ≥ 3 rankk (G) ≥ 2, so we can use Section 4.2. From Claim 4.1 there is a non
zero ideal 0 6= J ′/Ok such that Γ (J ′) :=

〈
Xαi,j (J

′)|1 ≤ i 6= j ≤ n
〉
⊂ b−1Γ (J) b.

Since b is an upper triangular matrix and U+ (J) ⊂ Γ (J)∩B ⇒ U+ (J ′) ⊂ Λ∗,
for every 1 ≤ i ≤ n − 1, we have [ei,n (J ′) , en,1 (J)] = ei,1 (J ′J) ⊂ Λ∗. So for
every 1 < i 6= j ≤ n, [ei,1 (J ′J) , e1,j (J ′)] = ei,j

(
J ′2J

)
⊂ Λ∗. Now we have{

Γαi,j
(
J ′2J

)
|1 ≤ i 6= j ≤ n

}
⊂ Λ∗ and from Theorem 4.4 Λ∗ has a �nite index

SLn (Ok). Since conjugated subgroup have the same index, so does Λ.

Corollary 6.2. For every �nite index subgroup Γ of SLn (Ok) there are a, b, c ∈
Γ such that [SLn (Ok) : 〈a, b, c〉] <∞.

Proof. Since Γ of �nite index there is a normal subgroup Γ ⊃ N /SLn (Ok) with
�nite index, then from the second isomorphism theorem we have

[SLn (Z) : Γ ∩ SLn (Z)] ≤ [SLn (Z) : N ∩ SLn (Z)] ≤ [SLn (Ok) : N ] <∞

so Γ ∩ SLn (Z) has a �nite index in SLn (Z). From Corollary 6.1, Γ ∩ SLn (Z) ∩
B (Q)wUn−1,n (Q) 6= ∅, so there is a g ∈ Γ ∩ SLn (Z) ∩B (Q)wUn−1,n (Q). For
the elements u1, u2 ∈ SLn (Ok) as de�ned in Theorem 6.2, since N is normal
with �nite index, there are m, l ∈ Z+such that um1 , u

l
2 ∈ N ⊂ Γ, and so from

Theorem 6.2
〈
g, um1 , u

l
2

〉
⊂ Γ has a �nite index in SLn (Ok).
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Remark. Notice that for α ∈ Z, we can omit the u2 elements in this section and
get a two generated �nite index subgroup of SLn (Z) as Meiri did.
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