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1 Introduction

For a group G we denote r (G) to be the smallest integer such that for every
finite index subgroup H of G, H has a subgroup of finite index generated by
r (G) elements. The attempt to bound r (G) for certain algebraic groups has
been very successful over the years. Lubotzky presented the following problem

Problem 1.1. [Lub86]For n > 3, does r (SL,, (Z)) = 27

This is not true when n = 2, since SLo (Z) contains a finite index non-abelian
free subgroup. A positive answer to this problem has been given for the case
n = 3 by Long and Reid[LR11]|. More recently, a positive answer to Problem 1.1
has been given by Meiri[Meil7]. Lubotzky and Mann proved in [LM87b], that
for the p-adic integers Z,,, r (SL,, (Z,)) = 2. This result gave a good indication
for a positive answer for Lubotzky’s problem. Another indication has been given
by Sharma and Venkataramana in [SVO05]. They showed that for G, a connected
semi-simple algebraic group over QQ, when G has no connected normal algebraic
subgroups defined over Q and that rankg (G) > 2, (G (Z)) < 3 (when we
restrict the finite index subgroups to have non compact quotient space over
G (R)). In their paper they also showed that for any number field k& and n > 3,
that r (SL,, (O)) < 3.

I researched a generalized problem of Problem 1.1, presented to me by
Lubotzky

Problem 1.2. For a Chevalley group G of high rank, does r (G (Z)) = 27

This question is yet to be answered, but it has strong indications that the
answer is positive, especially for the universal Chevalley groups. The conclusion
from the main theorem of this paper (Theorem 6.2), is that for a an integral
element over Z, k = Q(a) and n > 3, r (SL,, (Of)) < 3. As mentioned this
result is not new, but the proof is different then Sharma and Venkataramana’s
and based on Meiri’s work, utilizing the more specific structure of SL,,.

1.1 Motivation

In the study of discrete groups and pro-finite groups, the bound on r (G), bounds
other functions on G and functions on groups derived from G. In the field
of powerful groups, this bound has connections to a conjecture by Jones and
Wiegold[Lub86, LM8T7al. Another motivation for this problem derived from
the study of the construction of thin groups, which are discrete Zariski-dense
subgroups of G(R) that have infinite covolume. There is not much known about
the algebraic structure of thin groups and it seems difficult to construct new
types of them. By understanding in what conditions, small number of elements
creates Zariski-dense subgroups of G(R) that has finite covolume, we might be
able to find elements to create new thin group types[Meil7].



1.2 Organization

In Sections 2 and 4, I present definitions and results regarding certain algebraic
groups. Sections 3 and 5 present relative subjects in ring theory and matrix
theory respectively. Section 6, focuses on implementing the previous sections to
SL,,, the main result is in Subsection 6.2.

2 Chevalley Groups

In the past, defining and classifying families of simple groups was done mainly
by careful consideration of simple complex Lie groups and root systems. But
many groups, which were known to exist from an association to a Lie algebra
or root system, failed to admit a simple definition. Despite the fact that alge-
braic groups can be considered as subgroups of GL,, satisfying some polynomial
conditions, those conditions where hard to find. In 1995 Chevalley introduced
in a ground-breaking paper[Che55], a method of constructing and defining such
groups. This method can construct groups above arbitrary fields, including fi-
nite ones. In this section I will provide some background about the construction,
build and properties of the Chevalley groups. I’ll be writing about the Chevalley
groups in the broadened general version treated by Steinberg [Ste67].

2.1 Construction

Let £ be a semi-simple Lie algebra over C and let H be its Cartan subalgebra,
then we can write £ = H€P,,.o Lo where a € H* and

Lo={X € L|[H X] = a(H)X,YHEH} .

The a’s are linear functions on #H called roots and generate H* as a vector
space over C, every L, for a # 0 has dimension 1. Denote the collection of
all roots by ¥, then X is a root system in the vector space over (Q generated
by the roots marked as Hg. ¥ is irreducible if and only if £ is simple[Hall5,
Theorem 7.35]. Let {a1,...,a,} C ¥ be a system of simple roots and let
{Ha,, Xola € £,1 <i <n} be a Chevalley basis of the algebra £. We denote
Uz to be the Z-algebra generated by all X /m! for m € ZT;a € 3, Uy is called
Kostant’s Z-form [Kos09].

Lemma 2.1. [Ste67, p.16]Every finite-dimensional L-module V' contains a lat-
tice M invariant under all X™/m! form € ZT;a € X i.e., M is invariant
under Uy, .

Let ¢ be a faithful representation of the Lie algebra £ in a finite-dimensional
vector space V, from Lemma 2.1 V contains a lattice M invariant under all
©(Xo)" /m! form € Zt;a € ¥. For k an arbitrary field we denote V¥ =
M ®z k, and for a € ¥, we define homomorphisms z,, : k¥ — GL(V¥) of the



additive group k* of k into GL(V*) by

Ta (t) = eap (tp (Xa)) == 3 70 (Xo)™ /m!

m=0

and mark X, as the group {z, (t)|t € k} (x4 (¢) is additive in t), X, is the
root subgroup of «.

Definition 2.1. The subgroup of GL(V*) generated by all X,, a € ¥ is the
Chevalley group G (k) related to the Lie algebra £, the representation ¢ and
the field k.

When the representation ¢ is the adjoint representation, the related Cheval-
ley groups are those defined by Chevalley in 1955 [Che55].

2.2 Subgroups
2.2.1 Weyl Group

Definition 2.2. For each root o € ¥ |, let s, denote the reflection about the
hyperplane perpendicular to o in Hg, the subgroup W of the orthogonal group
O (H@) generated by all s, (a € ¥), is called the Weyl group of ¥. For every
a; (1 <i < n) the reflection s,, is called a simple reflection, the simple reflec-
tions creates W [Hall5, Proposition 8.24].

Remark 2.1. By the definition of a root system, each s, preserves ¥ , from
which it follows that W is a finite group.

Definition 2.3. For every a € X there are unique a; € Z,1 < i < n, in
which the nonzero coefficients are either all positive or all negative, such that
a =" a;a;, we define the height of a to be ht (o) := Y7 | a;.

Remark 2.2. When ¥ is a irreducible root system there is a unique root with
maximal height called the highest root [Hum90, p.40]. There are only nine
classification types for irreducible root systems (and so, simple complex Lie
algebras), A, B,,,Cp, Dy, Fs, E7, Es, Fy and Gs.

Each element w in W has a length which is defined by the length of the
shortest multiplication of simple reflections that creates w. The Weyl groups
are a type of finite Coxeter groups which are groups that have a presentation
in terms of reflections. In every finite Coxeter group there is a unique element
wo with maximal length, wy has order 2 and wyP = —P where P C X is
the set containing all positive roots [Hum90, p.15-16]. The elements created
by product of all simple reflections in W are called Coxeter elements, different
orderings produce conjugate elements, which have the same order. The order
of the Coxeter elements h is called the Coxeter number. The Coxeter number
can be calculated by h = % , or when ¥ is irreducible and A’ is the height of
the highest root, we have h = h’ + 1 [Hum90, p.79,84]. When h is even there is
a unique Coxeter element w such that wy = w"/2.



Example 2.1. For the irreducible root system of type A, _1 the Weyl group is
isomorphic to the symmetric group S,,, the Coxeter number is equal to n and
the permutation (12)(23)...((n —1)n) = (12...n) is a Coxeter element. For
an even n the permutation (246...(n —2)n(n — 1) (n — 3)...31) is the Coxeter
element w for which w"/2 = wy = (1n) (2(n —1))... (2 (2 +1)).

2.2.2 Borel and Cartan Subgroups
Proposition 2.1. [Ste67, p.29]Let UT = Xp := (X,|a € P) then:

(a) UT =[] X4 with uniqueness of expression, where the product is taken over
all o € P arranged in any fixed order.

(b) U™ is unipotent and is superdiagonal relative to an appropriate choice of
basis for V*. Similarly, U~ = X_p is unipotent and subdiagonal relative
to the same choice of basis.

Remark 2.3. For every o, € ¥ and t,u € k we have the following relations
presented by Steinberg which are independent of the representation space chosen
for G [Ste67, p.23]:

(R1) (za (), 25 (u) = [ %ia+jp (cijt'u?) where the product is taken over
all roots ia + jB € ¥,4,j € Z* arranged in some fixed but arbitrary
order, and the c; ;s are unique integers depending on «, 8, and the
chosen ordering, but not on ¢ or .

(R2) Wo (t) 1= 2o (t) 2o (—171) 2o (£) , wa = wq (1).

(R3) waxs (t) wy' = x5 (ct) where ¢ = ¢ (a, 8) = £1 is independent of ¢
and k. s, is the reflection in the Weyl group.

(R4) he (t) == wo () we (1)

Corollary 2.1. [Ste67, p.24]Let N be the group generated by all w,, (t), H be
the subgroup generated by all he, (t) and B be the group genmerated by Ut and
H. Then:

(a) U is normal in B and B=UVH.
(b) H is abelian and normal in N.

(c¢) If |k| > 3, N is the normalizer in G of H.

(d) There ezists an epimorphism ¢ : W — N/H such that o(sq) = Hwq (1)
for all roots .

Remark 2.4. From relation (R1) and Corollary 2.1, when « is a root with max-
imal height, X, is normal in U*. Under the same base of Proposition 2.1(b) H
is diagonal and X, is normal in B.



Theorem 2.1. [Ste67, Theorem 6]If k is an algebraically closed field, kg is the
prime subfield and M is the lattice as in Proposition 2.1 used to define G, then:

(a) G is a semisimple algebraic group relative to M.
(b) B is a mazimal connected solvable subgroup.

(¢) H is a mazimal connected group and diagonalizable under the same base
as in Proposition 2.1(b).

(d) ¢ as defined in Corollary 2.1 is an isomorphism.
(e) G,B,H, and N are defined over kg relative to M.

Remark 2.5. The groups B and N form a BN pair as defined by J. Tits [Tit64,
Definition 2.1].

A maximal connected solvable closed subgroup of an algebraic group, is
called a Borel subgroup, and a maximal connected abelian subgroup of an alge-
braic groups, is called a Cartan subgroup and is usually defined as the centralizer
of a maximal torus. When k is an algebraically closed field, B and H are a Borel
subgroup and a Cartan subgroup of G respectively. In this case there is a sin-
gle conjugacy class of Borel subgroups and a single conjugacy class of Cartan
subgroups.

Definition 2.4. A proper subgroup P C G is called a parabolic subgroup if
it contains some Borel subgroup of G. The unipotent radical of such P is a
horospherical subgroup U of G. The Lie algebra u of U is called a horospherical
subalgebra and the Lie algebra p of P is called a parabolic subalgebra. An
opposite horospherical subgroup of U is a horospherical subgroup U~ of G,
such that the algebra £ = p & u~. The opposite horospherical subgroup U~
always exist.

Example 2.2. UT, U~ are a pair of opposite horospherical subgroups of G.

2.3 Bruhat Decomposition

Throughout this paper, for n € N that represents w € W under ¢ : W —
N/H, I will write wB (Bw) in place of nB (Bn).

Theorem 2.2. (Bruhat decomposition)
(a) Uypew BwB = G, BwB is called the Bruhat cell of w.
(b) If k is algebraically closed the union is disjoint.

Remark 2.6. From the Bruhat decomposition, many questions about G can be
reduce to questions about W and B.

Theorem 2.3. [Ste67, Theorem 4’[Let w € W let n,, be a representative of w
in N, and set Q, = P(Nw~! (—P) (P denotes the set of positive roots). Then
BwB = Bn,Xq,, with uniqueness of expression on the right.



Example 2.3. For the orthogonal algebra £ = so09,, (C), which is the Lie alge-
bra consisting of the matrices { X €Mata,, (C)|XT Jo, + J2n X = 0}, where J,, is
the n-by-n matrix with one on the anti-diagonal and zero elsewhere. The index-
ing of the rows and columns of our matrices from top to bottom and left to right
isby 1,...,n,—n,...,—1. The root system is of type D,,, the roots are denoted
by a4,s4,; = T1€; T2 €5, (1 < i < j < n), the positive roots are a;+; = e; £ e;
for (1 <i<j<mn). For a certain representation we have G = SO, (C) =
{X€SL2,(C)|XT Jpn X = Jon }. The root elements zq, , (t);(—n < i,j <n) in
G correspond to the matrices e; ; (t) = Id+e€; —; (t)—€j,—; (t), where €; ; () hast
at the (¢, 7) entry and zeros elsewhere. B can be chosen to be the superdiagonal
matrices in G, representative for elements of W in G consists of all permutations
and an even number sign changes in n coordinates. So for w € W matching
the permutation ((n —1)...1(1 —=n)...(=1)) (n(—n)), which is a Coxeter el-
ement, we have Q,, = {a1,a1,—i|2 <i <n}, so every element g € BwB can
be written as g = bpyer n (t1.n) H?:Q e1,—; (t1,—;), where p,, is a permutation
matrix representing w.

2.4 Representation Spaces and Properties

Definition 2.5. Let V be a representation space for £, a vector v € V is a
weight vector if there is a linear functional A on H such that Hv = A\ (H) v for
all H € H. If such a v # 0 exists, we call the corresponding A a weight of the
representation.

Lemma 2.2. [Ste67, Lemma 27|Let V be a representation space for L.

(a) The additive group generated by all the weights of all representations forms
a lattice Lq.

(b) The additive group generated by all roots is a sublattice Ly of L.

(¢) The additive group generated by all weights of a faithful representation on
V' forms a lattice Ly between Lo and L.

All lattices between Ly and L; can be realized as in Lemma 2.2(c) by an
appropriate choice of V. For example, Ly = Lg if V corresponds to the adjoint
representation. The Chevalley groups Gy and G corresponding to the lattices
Ly and Ly, are called the adjoint group and the universal group respectively. The
property of the nesting lattices can be expanded to a property of the Chevalley
groups in the following way.

Corollary 2.2. [Ste67, p.30]If G, G’ are Chevalley groups constructed from the
same L and k but using V' for G’ in place of V, such that Ly, C Ly:. Then
there exists a homomorphism ¢ : G' — G such that ¢ (z), (t)) = x4 (t) for all a,
t and ker¢ C Z(G'). If Ly = Ly then ¢ is an isomorphism.

Remark 2.7. This gives us a useful tool to go between types of Chevalley groups.
The center Z (G), is finite and when G is the adjoint group, Z (G) = {1}. When

L is simple, G/Z (@) is simple, so G is almost simple.



Lemma 2.3. [Ste67, Lemma 32’[Assume L is simple and |k| > 3, then |G, G| =
G.

Remark 2.8. If k = C then G has the structure of a complex Lie group, and
all the preceding statements have natural modifications in the language of Lie
groups.

Theorem 2.4. [Ste67, Theorem 13]If G is a universal Chevalley group over C
viewed as a Lie group, then G is simply connected.

Example 2.4. SL, (C), Sp,, (C), and Spin,, (C) are simply connected. These
cases can also be proved by induction on n. [Che46, Chapter II]

3 The Ring of S-Integers

In this section I will introduce some information regarding a finitely-generated
Z-module, the ring of S-integers over certain fields.

Definition 3.1. Let k be an algebraic number field, an integral element is a
root of a monic polynomial with integer coefficients. The ring of integers of k
is the ring of all integral elements contained in k, is denoted by Oj.

Let S, be the set of all archimedean valuations of an algebraic number
field k, let S be a finite set of absolute values of k£ containing S.,. The ring
Og = {z € klv(x)>0 for every valuation v ¢ S} is the ring of S-integers of k
and Og_ = O.[RP94, p.11]

Theorem 3.1. Let a be an integral element over Z and k = Q(«), then for
every (0) # I < Z|a] there is an ideal (0) # J < O such that J C I.

Proof. First we claim that I NZ # {0}, let 0 # S € I it is integral so there is
a monic polynomial p(x) = 2" + a,_12" 1 + ... + ap € Z[z] and ag # 0 such
p(B) =0. ap = — (B +a—1872+...+a1) B € I because I is an ideal.
Now it is known that there is a Z basis for Oy, wy,...,w, € O\ {0}, such
Oy = Zwy + ... + Zw,. For every 1 < i < n there are p;,q; € Z[a]\ {0} such
w; = L since O C k = Q (). We mark ¢ = [Ii_,¢iandlet 0 #a € ZNI so
qw; € Z[a] C Ok. From I being an ideal we have qw;a € I for every 1 <i <n
and so if we denote h := aq € Z [a] we get hZw; C I. Since I closed under the
sum operator we have I D J := hZLl Zw; = hOy, and J is a non zero ideal of
Ok. O

4 Finite Index Subgroups

Let k be some field and let G be a connected k-algebraic group with a faithful
k-representation of G in some GL, (k). We identify G with its image under
this representation. For any ring R C k and subgroup H < G, we define
H (R) := HNGL, (R). More generally for an ideal I < R, we set

H(I)={zxe€e H(R)|Jr=Id( mod I)}. (4.1)



Notice that H (I) is the kernel of the projection IT: H (R) — H (R/I>.

4.1 Zariski Density of Finite Index Subgroups

In this subsection, let £ be a simple complex Lie algebra and let G be the
Chevalley group related to £, C, and some representation. Also let « be an
integral element over Z and k := Q («). The purpose of this section is to give a
quick explanation for the following proposition.

Proposition 4.1. Every finite index subgroup of G (Oy) is Zariski dense in G.

Remark 4.1. For every finite index subgroup H of G (Oy), HNG (Z) has a finite
index in G (Z), so it’s enough to prove Proposition 4.1 for G (Z).

Theorem 4.1. [BHC61, Theorem 1]Let G be a connected complex algebraic
group defined over Q. Then there exists an open set U in G (R) with the following
properties:

(a) G(R) = UG (Z).

(b) if G has no nontrivial rational character defined over Q, U has finite Haar
measure.

A character of G is a homomorphism from G to the multiplicative group of a
field, which is abelian, then from Lemma 2.3 we can see that every character of G

is trivial. This theorem by Borel and Harish-Chandra, implies that G (R)/G (Z)

has a finite Haar measure and since G (Z) is a discrete subgroup, that means
that G (Z) is a lattice in G (R). So every finite index subgroup of G (Z) is a
lattice in G (R).

Theorem 4.2. (Borel density theorem)Let G be a connected semisimple real
algebraic group without compact factors and let T’ be a lattice in G. Then T is
Zariski dense in G.

A slightly more general form of this theorem was first presented by Borel
in his paper [Bor60], the way this version derived from Borel’s original paper
can be found in Raghunathan’s book [Rag72, Chapter V]. The real Chevalley
groups have no compact factors, this comes from the construction, specifically
from the fact that the Cartan subalgebra has the same dimension over R as it
has over C. This dimension is the rank of G (over a selected field) and when
L is simple, is equals to the number of simple roots. The interested reader is
referred to [Morl5, Chapter 2], [Pet17, Lemma 3.11] for more details. So from
Theorem 4.2, every finite index subgroup of G (Z) is Zariski dense in G (R).

Theorem 4.3. [Ros57, p.44]If the connected linear algebraic group G is defined
over the infinite perfect field k, then the points of G that are rational over k are
dense in G.

From Theorem 2.1 G is semisimple, in particular G is connected. Since C
is perfect, from this Rosenlicht’s theorem we get that G (Q) is Zariski dense in
G. Obviously that mean that G (R) is Zariski dense in G, so every finite index
subgroup of G (Z) is Zariski dense in G.



4.2 Generating Pairs of Opposite Horospherical Subgroups

Here let £ be a global field and G a connected, absolutely almost simple, simply
connected k-algebraic group of ranky, (G) > 2. We fix a faithful k-representation
of G in some GL,, (k) and identify G with its image under this representation.
Let S be a finite set of valuations of k containing all the archimedean valuations
and Og be the ring of S-integers in k. We fix a maximal k—split torus T in G.
Let X denote the root system of G with respect to 7. Let IT C X be a system of
simple roots and denote by PT (resp. P~) the positive (resp. negative) roots.
For A C ¥, let X4 denote the group generated by all root subgroups X, o € A.

Theorem 4.4. Let I'(I) be the group generated by Xp+ (I) and Xp- (I). Then
for any non-zero ideal I <1 Og, I'(I) has a finite index in G (Og).[Rag92, The-
orem 1.2]

This result was first presented for classical groups with ranky (G) > 2 by
Vaserstein in[Vas73], and then for Chevalley groups for ranky (G) > 2 by Tits in
[Tit76]. Venkataramana expanded this result for some groups with ranky (G) >
1 [Ven94]. This result is true for an arbitrary pair of opposite horospherical
k-subgroups.

Claim 4.1. Let I be a nonzero ideal in Og and I' (I) denote the subgroup of
G (Og) generated by Xp+ (I) and Xp- (I). Then for any g € G (k) there is a
non-zero ideal I’ in Og such that gI" (I') g~! C ' (I).|[Rag92]

The universal Chevalley groups over C has the S-congruence subgroup prop-
erty. That means that every finite index subgroup of G (Og) contains a G (1),
for I a non zero ideal of Og, such G (I) is called a principal S-congruence sub-
group. The proof of Theorem 4.4 is connected to the congruence subgroup
problem, which asks if the S-congruence subgroup property applies. By stud-
ding the group under two topologies, called the S-congruence topology and the
profinite topology, we can find connection between the finite index subgroups
and the principal S-congruence subgroups.

5 Matrix Discriminant

Definition 5.1. The companion matrix of the monic polynomial p (z) = 2" +
ar_12" 1+ ...+ ag € k[z], for k a field, is the matrix

0O 0 -+ 0 —ag

1 0 e 0 —ai
Cp) =0 1 " 1 —a

S :

o --- 0 1 —a,_1

10



Claim 5.1. If A is an n-by-n matrix with entries from some field k, then the
following are equivalent[HJ12, p.194-195]:

(a) A is similar to the companion matrix over k of its characteristic polyno-
mial.

(b) The characteristic polynomial of A coincides with the minimal polynomial
of A.

(¢) There exists a cyclic vector vin V = k™ for A, meaning that {v, Av, A%v,..., A" 1v}
is a basis of V.

Definition 5.2. For matrices A € M,,(k), B € M, (k) their direct sum is

A 0
wope(40)

Theorem 5.1. Every matrix A € M, (k) is similar over k to a direct sum of
companion matrices C(p1)®...®C(p,) where p; € k [x] monic polynomials such
that for every 1 < i <r —1, pi|pix1. [DF03, Chap .12 Theorem 14.]

Remark 5.1. We can see that the characteristic polynomial of A is equal to
szl Di-

Definition 5.3. For two polynomials p (z) = Y1 a;z’,q () = Y1~ b;z® with
respective roots ay, ... ay; 1, ... Bm the resultant is defined by

Res(p,q) :=an'by, H H (i — B5)

i=1j=1
Definition 5.4. The discriminant of the polynomial p (z) = a,2™ + ...+ ag ,
where a,, # 0,a; € R a commutative ring, is

n(n—1)
(=D~

n

disc(p) = Res (p,p').
The discriminant of a matrix A € M, (k) is the discriminant of its charac-
teristic polynomial.

Remark 5.2. Form Definition 5.3, the resultant of two polynomials with coeffi-
cients in an integral domain, is zero if and only if they have a common divisor of
positive degree. If for a polynomial p we have disc(p) # 0 then Res (p,p’) # 0,
this is true if and only if there are no common roots for p and p’ and that is if
and only if p has distinct roots.
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6 The SL,, Group

When £ is the simple Lie algebra si,, (k) ; (n>2), the Lie algebra of n x n matri-
ces of trace 0 with multiplication [X,Y] = XY — Y X, the universal Cheval-
ley group G over £ and k is the SL, (k) group. The roots are the maps
diag (a1, a2, ...,an) — a; — a;,(1 <14,j <n,i#j), the positive roots are for
(1<i<j<n) and the root system is of type A,_1. We denote the roots
by «; ; and we have ht (c; ;) = j —i. We can choose the root elements ., ; (t)
in G, to correspond to the matrices e; ; (t) = Id+¢€; ; (t), where ¢€; ; (t) has t at
the (i, j) entry and zeros elsewhere. Under this choice, we have that U', B and
H (as defined in Proposition 2.1 and Corollary 2.1) are the unipotent superdiag-
onal, superdiagonal and diagonal matrices respectively. The root subgroups are
denoted by E; j := Xq, ; = (e, (t) |t € k) and for 1 < i < j < n and we define

Uij = (Erns| (£ s)or(j=sAr<i)) (6.1)
Notice that
ILos * = * 1 0 = *
1 *x =* * 1 = .. *
1 x * 1 *
U1,2 = 1 T 3U2,3 = 1
* *
1 1
1 0 % =% * 1 0 0 0 =
1 0 =« * 1 0 0 0
1 = * 1 0 0
Uiz = 1 Ul =
1
* 0
1 1

also notice that for (i, j) = (1,2), U2 = (E; ;|1 <i < j <n) =:U". From The-
orem 2.1, if K = C then the Weyl group W = Ne (H)/H ~ S,,. Representative
for elements of W in G can be the matching permutation matrices. However,
since the determinant of a permutation matrix is the sign of the permutation, to
represent an odd permutation in G, we can take one of the nonzero elements to
be —1 instead of 1. In this section I'll assume G = SL,, (C), and will prove some
results regarding G. Notice since £ is simple and G is the universal Chevalley
group over L and C, GG is simply connected and so, all the conclusions in Section
4 applies.

6.1 Open Set in a Conjugacy Class of a Bruhat Cell

In the Weyl group W 22 S,,, the element that correspond to the permutation o :=
(12) (23) ...((n = 1)n) = (12...n), is a Coxeter element. For a representative
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of the coset of ¢ in G (as defined in Corollary 2.1(d)), we can take the matrix

0 0 0 1
-1 0 0

w:=| 0 -1 . : (6.2)
: .0 00
0 0 -1 0

Notice that for ), as defined in Theorem 2.3, we have Q, = {a; |1 <i <n — 1},
n—1

Xq, = Un—1,n. Soevery element g € BwB can be writtenas g = bw [[,_; e; n (t;) €
EﬁUUﬁ,Ln.

Theorem 6.1. The conjugacy class in G (Z) of the Bruhat cell B(Q)wB (Q)
contains a Zariski open set.

Proof. We define the Zariski open set J := {g € SL,, (Z) | disc(g) # 0}, it is
Zariski open since it is a complement of an algebraic set. Let g € J, we’ll show
that g is conjugate in SL,, (Z) to a matrix in B (Q) wB (Q). From Theorem 5.1
we have that g is conjugate to @._, C (f;) in GL, (Q) for f; rational monic
polynomials such that f;|f;+1. The characteristic polynomial for conjugate ma-
trices is the same, so the characteristic polynomial of g is f := [[;_, fi. Since
disc(g) # 0, form Remark 5.2 we have that f has distinct roots. That means
that fi,..., fr are pairwise coprime, and from the assumption that f;|f; 11, we
get that r = 1 so g is conjugate to a companion matrix in GL,, (Z). From Claim
5.1 there is a v € Q™ such that V = {v,gv,...,g" v} is a Q basis for Q". So
under the basis V we have

ag
1 a1
lgly, =C(f) =
1 Gp—1
for a; € Z and since g € SLy, (Z) we have ag = (—1)""" and for
—1 —a1
ao
=~ -1 :
b= € B(z)
ST
ag
we get [g]vg = w. We can construct a Z basis W = {wy,...,w,} for Z™ such
that for every 1 <k <n
spang {w;|1 <i<k}= spang, {gi_1v|1 <i< k} (6.3)

and so g is conjugated to [g],,, in GL,, (Z). Since we can change w; — —w;, we
may assume the conjugation is in SL,, (Z). From Equation (6.3), the change of
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basis matrix between V and W is an upper triangular matrix b. We can set b’ =
b € B(Q) and we get [g],, = V' [g],,v'"! = Vwb~'V"! € B(Q)wB(Q).
As g is conjugated to [g],, in SL;, (Z), we are done. O

Corollary 6.1. Let H be a subgroup with finite index of G (Z), then H N

Proof. Every finite index subgroup contains a normal subgroup of finite index,
so we may assume that H is normal in G (Z). From Subsection 4.1, H is Zariski
dense in G, so from Theorem 6.1 H contains an element of the conjugacy class
over G (Z) of B(Q)wB (Q). Since H is normal in G (Z), it contains an element g
of B(Q)wB (Q). From Theorem 2.3, we conclude that g € HNB (Q)wB (Q) =
HNB(Q)wUy,—1,, (Q) as needed. O

6.2 Finite Index Subgroup Construction

The following Theorem demonstrate a method of using the Chevalley group
structure and certain elements, to generate a finite index subgroup. The method
is to use the fact that the Weyl group’s representatives, act on the root elements
as in Remark 2.3 (R3). So by having a root element, and a Weyl group’s element
representative with high enough order, we can create more root elements. For
example, for a root element e;; (t) in G and w as defined in 6.2, we have
Yei ;i (1) = €o(i),o() (—t) v e () = €o-1(i),0-1(j) (—t), for o = (1...n). Since
the root elements are unipotent elements and are the image of the additive group
of the field, it is not difficult to find root elements in finite index groups of G (Z).
The representative for the Weyl group in G (Z), are only in the form of w,, (+1),
as defined in Remark 2.3 (R2). So it is more difficult to find such elements in
our subgroups of G (Z). We go around this by finding more general elements,
specifically we use elements present in the Bruhat cells. In their composition,
those elements include a representative of an element in the Weyl group. By
having an element of a Bruhat cell, that is constructed from a Coxeter element
using a root element, we can generate most of the time a Coxeter number of
root elements. Once we have enough root elements, we use relation (R1) in
Remark 2.3, to create more. In this section we set n > 3, a an integral element
over Z and k := Q («).

Theorem 6.2. There are unipotent element u; € SL, (Z),us € SL, (Og)
such that for every g € SLy (Z) N B(Q)wU,_1,(Q) and every my,my €
Z*, (g,ul",uy"?) is of finite index in SL,, (Ok).

Proof. We take uy := ey, (1), u2 = ez, () and write g = bwu € B (Q) wU,—1,, (Q)
(where w as in (6.2) and B is upper triangular matrices and U,_1 ,, is as Equa-
tion (6.1) both over k). Let m,l € Z* and define A := (g,uf",ub) and show
that for every r € N there is a k, € Z* such that

U (k) o= 1d + (Ur 5 (k,Z) — Id) a” C A (6.4)

(where Uy 2(I) as in Equation 4.1). We'll show this by induction on r, in each
level we will use the relation in Remark 2.3 to create more root elements.
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r =0 This case has a proof given by Meiri in [Meil7], I'll show a variation of
it. Tl show that for every 1 < i < j < n we have k; ; € Z" such that

Ui(f;) (ki;Z) = U, ; (ki ;Z) C A by induction on j.

j=mn Again by induction on 1 < ¢ < n — 1 we’ll show that there are
kin € ZT such that U, ,, (k; nZ) C A.

i=1 In this case we have u” = e1,(m) € A and notice that
<61’n (m)> = El,n (mZ) = Ul,n (mZ) C A.

1 Assume for 7 and we prove for i + 1. From the assumption we have
€in (kin),e1n(m) € A and notice that b_lelyn (m) =b"tey,, (m)b=
e1,n (gm) for some 0 # ¢ € Q. Since U,,_1 ,, is abelian we have AN
SLn (Z) 3 h = [9¢;  (kin) , €10 (M)] = [Peit1,1 (—kin) 7bv€1,n (gm)] =
b [ei-i-l,l (_ki,n) ,€1,n (qm)] = b€i+1,n (_ki,nqm) = Id"'zz—ill gc,n (tc)
where t. € Z,t;11 # 0 and €, ; (t) is the matrix with ¢ in the
(i,4) position and zero everywhere else. Then since from the
induction assumption e, (—kintc) € A for every 1 < ¢ < i we

have (Hi:l €cn <_ki,ntc)) hFin = €i+1,n (ti+1ki7n) € A and so
Uiti,n (tig1ki nZ) C A.

j Assume for j and we prove for j—1, let 1 <14 < j—1 from the assumption
there is a ki—i—l,j € Z7T such that U7;+17j (ki+17jZ) C A Ui+17j is
normalized by b so e;y1; (1) € U1, from that we have that
u716i7]’_1 (1) = Id+gi,j_1 (1)+gi,n (%) S gilUi_;,_l’j for z; € L, zo 75

0. We define the projection Ily, , ; : SL, (Z) — SL, (Z/kiJrl jZ) and

notice that for v’ € U;y1;(Z), if 97 € ker (Hki+17].) , then v/ €
ker (I, ,). So
1 —1
(g Ui+1,j) (ki+1’jZ) c9 (Ui+1,j (ki+1,jZ)) C A. (65)

1 zokiq1,; 1
Then we know that (u €i,j—1 (1)) s S (g UH-L]') (ki+1,jZ) C
A. Since the assumption give us e; , (—z1ki+1,5) € A,

zokiq1,j
) =e;j-1 (22kiy1,j) €A,

ein (—21kit1,5) (“7161‘,%1 (1)
S0 Ui,j,1 (Z2k'i+1,j) C A.

r — 1 We now assume (6.4) for every 1 <1’ < r. So for every 1 <i < j <n we
need to find kz(? € 77 such that Ui(;) (kz(?Z) C A, we’ll do it by induction
on j.
j =n We will show that for every 1 < i < n —1 thereis a kl(zz € Z* such
that Ui(;l) (kf’gZ) C A, by induction on i.
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i =1 Since Ul(,r{l) (ky—1Z) C A we have [e1o (kp—1a” 1), ub] =
e1n (kr—1la”) € A and so UL") (k,_11Z) C A.
1 We assume for ¢ and prove for ¢+ 1, from the assumption we deduce
that A 5 "' := [geim (k;?o/’) ,€ln (m)} =Y eir1n <fqu§;30f>
Id + ’;11 €en (tha”) for t, € Z,t;, ; # 0. We can have now
(Hi:l e (—kl(f,ztf:ar)) Bk = €itln (t;Hk’gQa’“) e A=
Ui(«?Ln (t§+1k§2Z> C A
j We assume for j and prove for j—1,let 1 < i < j—1 from the assumption

there is a k;1,; € Z* such that Ui(JTr)l,j (kgl)l’jZ> C A. Since U1

is normalized by b we have gflUi(i)l)j =Id+ (gflUH_Lj - Id) a” >
- 1

h:="" e ;j—1(a")=1Id+¢_1(a") +€n (2—30/“) for z; € Z,z4 #

Z4

0. Similar to (6.5) we have h*tki+1i ¢ (9_1Ui(i)1’j> (kis1,Z) 9
(Ui(-:)l,j (kiH’jZ)) C A. Since €;,, (—2z3kit1,;07) € A, we have

€in (—Z3]€i+17j05r) BZ“ki‘H’j = €j—-1 (Z4ki+17j0/’) € A. So we can de-

duce that Ui(;)_l (2akit1,;Z) C A as needed.

Let d € Z the degree of the minimal polynomial of o over Z. We define k =
H?:o k;, then from previous part we have U{@ (kZ) C A forevery 0 <i<d. We
denote 0 # [ := Z?:o kZa' <Z[a]. From Theorem 3.1 there is a non zero ideal
0 # J <O, such that J C I, so we have U™ (J) C A. Since U,,_1 ,, is abelian we
have 9e, 1., (J) =b en1 (J), we denote A* :=b"" A then en1(J) C A*. Since
n > 3 ranky (G) > 2, so we can use Section 4.2. From Claim 4.1 there is a non
zero ideal 0 # J'<4Oy, such that T' (J') := (Xq, ;(J)|[1 <i# j<n) Cb T (J)b.
Since b is an upper triangular matrix and Ut (J) Cc T (J)NB = U (J') C A*,
for every 1 < i <n —1, we have [e;n (J'),en1(J)] = €1 (J'J) C A*. So for
every 1 < i # j < m, [eg1(J'J),e1;(J)] = e;; (J2J) C A*. Now we have
{Ta,, (J?J)1 <i+#j<n}CA* and from Theorem 4.4 A* has a finite index
SL,, (Ok). Since conjugated subgroup have the same index, so does A. O

Corollary 6.2. For every finite index subgroup T of SL,, (O) there are a,b,c €
T such that [SL,, (Oy) : {a,b,c)] < oco.
Proof. Since T of finite index there is a normal subgroup I' O N <SL,, (O}) with
finite index, then from the second isomorphism theorem we have

[SL,.(Z) :TNSL, (Z)] <[SL,(Z) : NNSL,, (Z)] < [SL,, (O) : N] < o0

so I' N SL,, (Z) has a finite index in SL,, (Z). From Corollary 6.1, I' N SL,, (Z) N
B(Q)wUp—1,, (Q) # 0, so there is a ¢ € ' N SL,, (Z) N B(Q) wUp,—1,,, (Q). For
the elements uy,us € SL,, (Of) as defined in Theorem 6.2, since N is normal
with finite index, there are m,l € Z%such that u}*,ul € N C T, and so from
Theorem 6.2 (g, uf",ub) C T has a finite index in SLy, (O). O
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Remark. Notice that for « € Z, we can omit the us elements in this section and
get a two generated finite index subgroup of SL,, (Z) as Meiri did.
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